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Abstract. Fuzzy sets and fuzzy logic were proposed as a means to handle states
and/or relations that are not well defined or that present gradual transitions.
These characteristics have enabled simpler solutions to numerous problems,
particularly in the area of control. Nevertheless, the model used for most appli-
cations does not fully match the requirements for fuzzy logic. Though the
model is fuzzy, because it is based on fuzzy sets and fuzzy operators, it is not a
logic model. Also, fuzzy models are generally more important from a numeric
approximation point of view. In this paper we give some conditions and con-
straints for better approximate reasoning with a fuzzy logic model, which is
more important from a linguistic approximation point of view. However, the
monotonic property is necessary, otherwise, when this condition is not fulfilled,
it can be used as exceptions or as approximate reasoning with decision making.

Keywords: Fuzzy Logic, Approximate Reasoning, Fuzzy Rules, Human-
Machine Interface.

1 Introduction

Since fuzzy sets and fuzzy logic were proposed, they have been used as an excellent
tool to handle states and/or relations that are not well defined or have gradual transi-
tions among other characteristics [1, 2]. These characteristics enabled simpler solu-
tions to numerous problems, particularly in the area of control [3, 4]. Nevertheless, for
most applications the model does not fully match the requirements of fuzzy logic.
Therefore, the model is fuzzy, because it is based on fuzzy sets and fuzzy operators,
but it is not logic because the inference with these models differs from the inference
in logic. Besides this, these models are generally more important from a numeric ap-
proximation point of view [5].

A strictly fuzzy logic model has little application even if some efforts have been
made to use it as it has been used for fuzzy models in control. The main problem
arises at the moment of approaching either the conclusion of the fuzzy relation repre-
senting the fuzzy rules, or approaching the conclusions which result from the applica-
tion of the fuzzy rules individually. In both of these cases, it generally results in a
subnormal conclusion with a significant degree of uncertainty for a complete rule set,
resulting in a conclusion that generally has little meaning. Obviously, because of this,
it is difficult to establish a complete set of fuzzy rules that satisfy all the conditions
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required for inference, and that allow obtaining the maximum significance for the
conclusions of the fuzzy logic model.

This problem of the fuzzy logic model can be explained in the following way.
When two fuzzy rules are fired at the same time, but these rules contain contradicting
conclusions, the result could be an empty conclusion. However, the necessary condi-
tions required for the parameters of the fuzzy logic model, as well as the restrictions
on the maximum uncertainty on the input values to the model, can be very well estab-
lished. This model can be used for approximate reasoning, and, as more knowledge is
involved (more rules are fired at the same time), the conclusion is more precise [6, 7].

In this paper a fuzzy logic model is considered. We show that with this model the
most important aspect is the inference using linguistic terms, which serve as labels of
the fuzzy sets. Under these conditions, and if the model is well designed, the gradual
transition in the conditions of the rules helps to obtain a gradual transition on the
terms involved in the conclusions. This avoids the uncertainty other than the fuzzi-
ness. This is a natural situation because the uncertainty in the fuzzy rules and in the
input data have been taken into account in advance, so better conclusions result from
complete input data and from the maximum amount of knowledge (rules) involved in
their calculations.

As is shown in this work, the fuzzy sets of the input variables must be defined ac-
cording to the input data. If they consist on precise values only, the fuzzy sets can be
defined as a strict possibilistic partition. Otherwise, for fuzzy input data, the partition
must take into account the maximum fuzziness or imprecision in order to define the
fuzzy partition of the inputs. We also consider the case of incomplete input and we
propose a non standard procedure for the calculation of the output.

One necessary condition, in order to obtain the previous results, is that the model
must be structured for monotonic knowledge. When this condition can not be satis-
fied, because there are rules with similar conditions but very different conclusions, we
propose the use of rules that do not satisfy the monotonic property as exceptions. For
this, we handle them in a different way, keeping monotonic knowledge in one fuzzy
logic model and exceptions in another model, such that the conclusion of the rules
are: y is B unless y is B C, where y is 3 C represents an exception and £ it the degree
of certainty. So, the goal of this work is to present the conditions and constraints in
order to use the fuzzy logic model for better approximate reasoning.

Section two presents the fuzzy logic model, and in section three we use this model
to do approximate reasoning. As this model has monotonic rules, we consider the lin-
ear and nonlinear cases as well as the precise and fuzzy inputs, and the case of incom-
plete input. In this section we also handle as exceptions the rules that do not satisfy
the monotonic conditions and we propose a more general output for a fuzzy logic
model. Finally, in section four, we give the main conclusions concerning this work.

2 Fuzzy Logic Model

Fuzzy logic was proposed as a means to do reasoning under uncertainty. This can be
done with a fuzzy model based on a set of conditional fuzzy rules such as “if ... then
..."". The quantification of the condition is made with the observation x is A’ and the
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inference follows the Generalized Modus Ponens (GMP) [2], such that a conclusion
y is By’ results for each rule, as shown in the next scheme.

Rule: Ifxis A, Theny is B;
Observation:  xis A’
Conclusion: yis B’

A rule is modeled by a relation that depends on an implication operator. In the case
of fuzzy logic there exist several possibilities and the choice can be made by the prop-
erties and/or the behavior of the operator [8]. In fact, this has resulted in a typology of
fuzzy rules [9]. In this work we consider certainty rules, which express that y is in B;
only for input values x in the core of A,

From the computational point of view, a fuzzy rule is modeled by a fuzzy relation
Ry = A; - B, where 4, and B, are the fuzzy sets of the input and output variables re-
spectively. The calculation of a conclusion B’ using ihis relation is B’ = 4 "°R;, that is,
it is calculated according to s5(3) =sup.exT[pts(x), (%, ) ], ¥y €Y, where the relation
Hr(x,y) represents the conditional rule, and 7 a T-norm. Fig. 1 shows an example of
fuzzy rule based on the Kleene Dienes implication (u(x, Y)=min(l-pu(x), us(y))).
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Fig. 1. Inference using a fuzzy rule based on the Kleene Dienes implication.

According to the MPG, as the observation x is 4’ approaches the premise x is A4,
and for certainty rules it approaches the core of 4, the conclusion approaches B with a
reducing uncertainty level v. For the Kleene Dienes operator, the uncertainty v corre-
sponds to v = sup,xymin(4’(x), 1-A(x)) [10]. From this expression it is clear that
this value will be zero iff the complement of the fuzzy set A(x) is defined outside of
the support of 4’(x), or A’(x) ccore of A(x).

From the logical point of view, given 4, the property By = m },nAs0(4i—B;) must
hold for a set of implicative fuzzy rules. And, if 4, is defined such as 4, € 4,4, .,
the conclusion must be a logical output satisfying the previous property where By <
B,MB, ., according to the Generalized Modus Ponens.

In other words, take 4, such that the membership degree to 4; is equal to one, and
the membership degree to 4,., is equal to a, with a € (0,1), then the conclusion is in
this case By = . ;,ndi0(4,—B), with By c B;. The degree of approximation between
these fuzzy sets depends on the a value. For example, as o — 0, By — B, whereas, as
a—1, By »B;n B,



6  Ruben Ruelas, Donald Carr

As can be seen in Fig. 1, the conclusion B’ is a normal fuzzy set similar to B, and it
presents the uncertainty v over all the universe of discourse. The shape of B’ and its
similarity to B change according to the similarity between 4 and 4’ and the implica-
tion operator used. Also, as the final conclusion must be determined by the conjunc-
tion of the individual conclusions, this conclusion will be normalized only if the fuzzy
partition of the output was built in order to obtain this result [7].

When using a fuzzy logic model we can follow two approaches. One of the ap-
proaches is to combine in a unique fuzzy relation the relations given by the individual
fuzzy rules as given in (1) and (2). The other approach is to combine the results given
by inference with individual fuzzy rules, as given by (3). The main differences be-
tween both approaches are the operating mode and the final conclusion. For the for-
mer model, the conclusion is more precise [11]. However, in this work we limit the

analysis to models with individual rules.

R=0y, Ry 0]
B'= A'oR @)
B'= mk:l,n A'ORI( (3)

As a general case, there is always interest to define a complete set of rules for a
fuzzy logic model. This requires defining a fuzzy partition of the universe of dis-
course of each variable. A strict fuzzy partition is the most common case, and it satis-
fies (4). Another option is to use a strict possibilistic partition, which satisfies (5).
Fig. 2 shows an example of both partitions. For a fuzzy logic system, the strict possi-
bilistic partition of the inputs must be a lower bound such that the uncertainty v of the

conclusion can be eliminated for coherent reasoning.
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Fig. 2. a) Strict fuzzy partition, b) Strict possibilistic partition.

According to the previous analysis of the model, the fuzzy partition of the inputs
must be made such that they allow better conclusions and a minimum of uncertainty
in the result. Comparatively, the intersection of two adjacent fuzzy sets must be
placed at the invariants, or at the local minima, in a similar way as a fuzzy model built
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for function approximation [12]. On the other hand, the fuzzy sets of the output must
have at least the minimum intersection such that every conclusion given by the model
is normalized. In other words, if p is the maximum number of different conclusions
given by rules that could be activated at the same time, this is the minimum number of

output fuzzy sets that must have a non empty intersection in order to satisfy this con-
dition.

3 Approximate Reasoning

As it was shown in [7], the fuzzy model must have possibilistic partitions in the input
universe of discourses, but the output needs a partition that satisfies the minimal
number of intersection fuzzy sets. In this work we consider more restrictions and con-
ditions in order to take better advantage of the fuzzy logic model. These results im-
prove some results presented in [13, 14], and generalize to the multi-input model. For
instance, take the next rule as an example of fuzzy rule ‘

If x,is 4,and x, is B, Thenyis C, (6)

wherei=1,2 .,N,j=12, .., N,, and k = i+j-1. The rules expressed in this way
refer to monotonic knowledge so the relation among inputs and output can be ex-
pressed as a table of rules, as shown in Table 1. In order to simplify the analysis of the
model we consider a monotonic reasoning. When this condition is not satisfied, the
non-monotonic part is taken into account in a parallel model with a model having
monotonic knowledge and another model with the rules that do not satisfy monotonic
condition. For example, take the previous rule which supposes the order Cy,
<Ci<Cy., on the fuzzy sets of the output. Under this consideration, the definition of
the fuzzy sets is simplified because we have the same conclusion for the rules where
the sum (i+)) is constant. See Table 1.

Table 1. Monotonic rules for the fuzzy logic model.

X,\X, BN SN ZE SP BP
BP Cs Cs G Cs Co
SP Cy Cs Cs C, Cs
ZE C Cs Cs Cs G
SN C; Cs Cq Cs Cs
BN C, G, Cs C, Cs

The monotonic condition, accompanied with the design of the fuzzy sets for the
model, is a necessary and sufficient condition in order to have coherent reasoning. If
this condition can not be satisfied, it is necessary to divide the model into sub-models
and to build a meta-model such that it will be the responsible for determining the final
output, according to the output provided by each model, or if it is possible to consider
the non monotonic behavior as exceptions as proposed below.
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Taking into account the previous considerations, the necessary fuzzy sets for the
output can be calculated as n.=(1-N)+Z ;. for N inputs, where n. and n,, j=1,2, ...,
N. are the number of fuzzy sets for the output and the inputs respectively. So, let us
consider a model with two inputs having strict possibilistic partitions. Every input

s no more than two non-zero membership degrees in accordance with fuzzy
sets. Take i and i+/ for input one, and j and j+/ for input two for example. Then, the
maximum number of rules activated at the same time is four, but their conclusions use
only three fuzzy sets, that is k,=i+j-1, k;=i+j and k;=i+j+1.

An example of fuzzy sets for this model is given in Fig. 3. When a strict possibilis-
tic partition is used in the inputs, the model is designed in order to work only with
precise values. In this case, in the partition of the output there must be the intersection
of at least three adjacent fuzzy sets. This implies that the maximum number of rules
fired at the same time is four but the number of different conclusions is three.

value ha
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Fig. 3. a) Strict possibilistic partition for the inputs. b) Possibilistic partition for the output.

Linear Reasoning

According to the condition for the fuzzy sets of the output, and as the model is
more appropriate for an approximate reasoning based on symbols, the partition of the
output must be defined based on the intersection of the fuzzy sets. This is shown in
Fig. 4a, where two hypothetical fuzzy sets (Co and C,o) are considered at the ends in
order to define completely the fuzzy sets. They provide the internal limit of the C, and
C; fuzzy sets. )

Based on these fuzzy partitions, the fuzzy logic model gives approximate reasonin
for three kinds of symbols as those illustrated in Fig. 4b. This also shows that thi
most precise linguistic conclusions of the model are the fuzzy sets C;NC;,;NC;+,. Take
for example the conclusions of two individual rules such as C; and C,. Their alr.ggrega-
tion is a normal fuzzy set. If the conclusion is given by four fuzzy rules, say C;, C
C, and C; for example, the result continues to be a normal fuzzy set. If only one,rulze;
is fired and the conclusion is C; for instance, the result is normal and more imprecise
The main difference between these examples is that when more knowledge is taken
into account, more rules are fired, and the more precise the final conclusion becomes

L.mear reasoning is considered a fuzzy logic model with uniform strict possibilist{c
partition of the inputs, and uniform possibilistic partition based on the most precise
fuzzy sets of the output, as those of the Fig. 4a. Fig. 5 shows an example. So, as more
rules are involved in the final conclusion, they serve as a factor to increase’ to some
degree, the precision of the final conclusion. The increase in precision deper;ds on the
certainty of the activated rules.
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Fig. 4. a) qut precise fuzzy sets that defines the partition of the output. B) Different fuzzy sets
that can be given as result of reasoning.
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Fig. 5. Fuzzy logic model with linear reasoning.

Nonlinear Reasoning

In the previous section we consider monotonic and linear reasoning. However,
fuzzy logic is interesting because nonlinearity can be handled in a natural way. This
can be observed in the perception, reasoning and decision making of human beings,
and this is what fuzzy logic was developed to model [15]. So, if fuzzy rules are de-
fined according to the monotonic property, the most difficult task is to find the appro-
priate distribution of the fuzzy sets. The fuzzy sets of the inputs and the output must
take into account the nonlinearity of the reasoning process in the space where the
model is defined. Fig. 6 contains some examples for the output fuzzy sets
GNCi+iNCisz. In Fig. 6 there are some regions with more precise and some regions
with more imprecise information, the former represented by narrower fuzzy sets. Ob-
viously, the nonlinearity of reasoning can also be done by the non uniformity of the
partition of the inputs. Nevertheless, they are not shown here for simplicity.
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Fig. 6. Examples of non uniformity in the output fuzzy sets.

Fuzzy Inputs

The partition on the inputs depends on the application. For precise inputs the best
is a strict possibilistic partition, whereas for fuzzy inputs the partition must not be
strict. Although the core of each fuzzy set must have a minimum intersection with the
core of other fuzzy sets, and, as a minimum, must be equal to the maximum size of
the support of all fuzzy inputs. Furthermore, the intersection of the cores of two adja-
cent fuzzy sets must have at least this size. This represents the maximum acceptable
uncertainty for this particular model in order to have coherent reasoning, without un-
certainty other than the fuzziness of the output. Fig. 7 shows an example of fuzzy par-
tition for a maximum support of a fuzzy input of 0.5.

55 15 1w X

Fig. 7. Intersection of supports and cores according to the maximum size of a fuzzy input.

Consider the maximum imprecision allowed at the inputs. As shown in the Fig. 7,
the minimum separation between the supports of two non-adjacent fuzzy sets of the
inputs must then be this maximum imprecision. Thus, for every input value at most
two fuzzy sets have a non-empty intersection. Also, the intersection of the cores of
two adjacent fuzzy sets must be equal or greater than the maximum imprecision.

Taking into account the uncertainty (fuzziness or imprecision) of the input, the
fuzzy sets of the inputs can be defined according to this uncertainty. However if the
input is within the set of elements of only one fuzzy set, or is within the core (4; N
A)), there will be no distinction among precise, imprecise and fuzzy values of the in-
put. This can be interpreted as a degree of distinction which has a strict possibilistic
partition for one side (total distinction), and a qualitative partition for the other side
(zero distinction). Besides, as the input takes on a fuzzier or a more imprecise value,
the model generally gives a more imprecise output.

Designing the partition of the inputs for a maximum fuzziness of the data, each of
the inputs will activate a maximum of two rules. Otherwise, if we allowed the input to
activate three fuzzy rules or more per input, the conclusions will be much more im-
precise and it will require the intersection of four or more fuzzy sets. Thus, this will
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require bigger supports and cores for these fuzzy sets. So, if the previous condition is
not satisfied, the number of rules activated will be greater than two and it is necessary
to make some restrictions on the fuzzy partition of the output. Nevertheless, it is more
difficult to satisfy this requirement than to limit the uncertainty of the inputs. Under
these conditions 4, U 4; can not be accepted as input, because in this case the conclu-
sion of the model will be ¥ (the universe of discourse of the output).

The rule-by-rule approach has been followed in this work. Nevertheless, if the in-
puts can have fuzzier values than anticipated, then first aggregate the rules and after-

wards infer with the resulting fuzzy relation. This approach gives more precise results
for these cases [11] and this can be helpful.

Incomplete Input

As previously shown, for complete input, the conclusions become more precise, as
more rules are involved in the particular reasoning process. Nevertheless, a fuzzy
logic model must be able to do reasoning when faced with incomplete input. A pro-
posal to'take advantage of the fuzzy logic model is to do incomplete reasoning when
faced with incomplete input. For this, it is necessary to consider the rules while ignor-
ing the variable for which there is no input value available, and to take into account
the remaining variables and the rules that contain them in the premises. So, given this,
a greater number of rules will be activated at the same time. Then, following the same
procedure for the fuzzy logic model with complete input, the result would be incoher-
ent. It is then necessary to follow an alternative procedure when faced with these
situations.

For example, when inputs are incomplete, reasoning must be done but aggregation
of the conclusions must be avoided. For incomplete reasoning the output must be cal-
culated as the median value of the conclusions of the activated rules. Take for in-
stance, the rules of the Fig. 8 and suppose the value of x, is unknown for a given
value of x,. If the value of x, is in the core of A,, then the output is the set of conclu-
sions C, to Cs. The median value, in this case, is Cs. If the value of X, is in the core of
A,, then the conclusions is the set C, to C,. The corresponding median value is C,.
However, if the input value is in the core of A, and A,, then the set C, to Cg is given
as the conclusion. The median value in this case is C; and C, which can be translated
into a mathematical expression as C; N C,. This can be the basis for an iterative proc-
ess of looking for a good conclusion through an approximate reasoning process, wait-
ing for the missing input values. This could also be helpful for the application of the
fuzzy logic models in research engines.

As can be seen, the monotonic behavior of the model is not lost when faced with
incomplete input. What are lost are the most precise symbols of the output, because in
the previous example the conclusion could be two kinds of fuzzy sets but not the most
precise ones, as shown in Fig. 4b. So, for these conditions the output can be calculated
as the median value that corresponds to a fuzzy set of the output for an odd number of
conclusions, and an intersection of two fuzzy sets for an even number of conclusions.

However, the model can still be useful in situations where data is incomplete. For
example, for a two input and one output model, if we have an input value for one
variable but the value for the other variable is not available at the moment of the in-



12 Ruben Ruelas, Donald Carr

ference. it seems interesting to obtain an output (to take advantage of the knowledge
coded in the fuzzy model), and to obtain an output that is a suggestion, not a conclu-
sion. Consider a model with three inputs,

If x,is A, and x, is B, and x,is C, Then yis D, (7

where m = i+j+k-2. If only x; is available, the conclusion is y = {D, D;.,

D, .x2-x3.2)- The final result can be approached following the previous procedure.
When two inputs are available, the conclusion is y = {D,.j.1. Di-p - Di.y. n3.24. Fi-
nally, consider the values when all three inputs are available. In this case, the conclu-
sion is y = D,.;-x.2. This example clearly shows that when the input information is
more complete, the conclusion is more precise.

Non monotonic Reasoning

Monotonic reasoning, linear or nonlinear, presents a limitation as it does not offer
much flexibility in the definition of the fuzzy rules, as shown in Fig. 8. In this situa-
tion the conclusions of adjacent rules must have a normal intersection, so the imple-
mented reasoning is of the type “More (Less) ... More (Less) ...” or any combination
of these. Under this point of view, the fuzzy logic model seems to be a detailed de-
scription of a gradual rule “More ... More __» In order to relax the condition of adja-
cent conclusions for adjacent rules, the fuzzy sets of the output are harder to define
and it becomes more complex as further fuzzy sets must have a non-empty intersec-
tion.

Considering regions that go beyond the region where a fuzzy logic model is de-
fined, we can find each region with monotonic knowledge but with non monotonic
knowledge among regions. A multi-model approach can be applied such that the be-
havior is well represented by fuzzy logic models. However, if a domain presents a
monotonic behavior, except for particular cases that do not satisfy this condition, the
model can be extended to a model with exceptions and the conclusions of the rules

modified such that “y is B unless y is fC ", where “y is 5 C” represents the exception
to the monotonic condition, and Sthe certainty degree of the exception.
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Fig. 8. a) Rules for monotone reasoning b) Gradual reasoning more (less) ... more (less) ..

The fugzy rules of a model, including an exception, are represented in Fig. 9a, al-
though this mgdel can be decomposed into two fuzzy logic models in parallel. One of
the models with a complete set of monotonic rules, as those of the Fig. 8, and the
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other with the exception as in Fig. 9b. The final output of the model will be the con-
clusion of the rules or the exception, depending on the value of the degree of cer-

tainty.
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Fig. 9. Non monotony in a rule set.

Calculus of Linguistic and Numeric Output

The output of a fuzzy logic model approximates fuzzy sets with different precision;
Fig. 4b shows some examples. However, depending on the application of the fuzzy
logic model, it is necessary to approximate the output by the linguistic terms of the
possible output; C,, C,~C,.,, C.,nC, CiunC,C,.,, etc., and a set of qualifying
terms, such as almost, approximately, more or less, etc., that grades the precision of
the linguistic term with the conclusion of the model, such that the conclusion would
be almost C,, almost C,.,nC, approximately C,.;,nC,, approximately C.,nC,nC,.,,
more or less C,NC,.,, etc. It could also be necessary to approximate the output by
numeric values of the universe of discourse Y. A fuzzy logic model can provide both
types of values although the linguistic output is the most interesting from the logic
point of view.

The linguistic approximation can be used with other models or as a human-
machine interface, whereas the numerical approximation can be used with models de-
veloped to control systems for example. The fuzzy logic model is then very useful for
logical reasoning and numerical approximation, so the model offers the possibility of
a good relationship between meaning and precision.

The numerical approach consists in the calculation of a precise value from the
fuzzy conclusion of the model using a center of area defuzzification method for ex-
ample [16]. Consider the fuzzy conclusion shown in Fig. 5. In this case, a defuzzifica-
tion method, as the one mentioned previously, can be applied to calculate a numerical
output for the model. From the design of this model it is possible to get a good nu-
merical approximation, which shows that even if the fuzzy logic model is more ap-
propriate for linguistic reasoning, it is able to easily interface with models where pre-
cision is required.
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4 Conclusions

The main problem with fuzzy logic models is in the ability to obtain coherent outputs.
In this paper we propose some conditions and restrictions in order to solve this prob-
lem. Indeed, a method is proposed to define the fuzzy sets for all the variables of the
model. such that coherent reasoning can be achieved. The results are very interesting,
and. overall, if we consider that the most precise conclusion is obtained when more
knowledge (rules) is involved in the calculation.

The uncertainty of the reasoning, other than the fuzziness, can be avoided if the
partitions of the inputs have a strict possibilistic partition as a lower bound. Also,
normal conclusions, in the sense of fuzzy sets, are always possible if the partition of
the output respects the minimum number of cores of the fuzzy sets that must intersect.
Linear and nonlinear reasoning can be made with the fuzzy logic model according to
the distribution of the fuzzy sets in their respective universe of discourse; however,
obviously, linear reasoning gives the simplest partition and distribution.

Knowing the maximum uncertainty of fuzzy inputs it is possible to determine the
parameters for the model, in particular, the fuzzy partition of the inputs, in order to
obtain coherent reasoning for these kinds of inputs. Also, the knowledge coded in the
model can be used when faced with incomplete input. Nevertheless, the model re-
quires of a different procedure for the calculation of the output, and the result is con-
sidered a suggestion and not a conclusion.

Non-monotonic behavior is difficult to model with a fuzzy logic model, particu-
larly for the aggregation of the conclusions of the rules. In this work it was proposed
that the monotonic behavior should be kept in one model and the cases of non-
monotonic behavior be kept in another model such that the final conclusion can be
modified to y is B unless y is B C, which takes into account the monotonic behavior
subject to the exception.

The fuzzy logic model is well adapted in order to make a good connection between
models in different levels of a hierarchy, because approximate reasoning can be made
from the linguistic or numeric point of view. Linguistic reasoning requires the ap-
proximation of the conclusion with the linguistic terms of the fuzzy sets, and a set of
qualifying terms such as almost, approximately, more or less, etc. Linguistic reason-
ing can be used for a higher level of reasoning in an intelligent system, where mean-
ing is more important than precision; this could be the case of a human-machine inter-
face for example. The numeric reasoning requires a defuzzification method, as the
center of area method, which could be applied to the conclusions so that precise val-
ues can be given and used as input to another fuzzy model. So, the fuzzy logic model
described here provides a good relationship between meaning and precision.
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